

Answer Key

Problem 1 (Vector Equation)

- Find the Vector equation for a line that has:
- Slope $\frac{2}{3}$ and passes the point $(1, -5)$

Work

- $\vec{v} = \langle 3, 2 \rangle$
- $\vec{r}_0 = \langle 1, -5 \rangle$
- $\vec{r}_0 + t\vec{v} = \langle 1, -5 \rangle + t\langle 3, 2 \rangle$
- $\vec{r}_0 + t\vec{v} = \langle 1 + 3t, -5 + 2t \rangle$
 $x = 1 + 3t$ and $y = -5 + 2t$

Our final answer will be: $\boxed{\vec{r}_0 + t\vec{v} = \langle 1 + 3t, -5 + 2t \rangle \quad | \quad x = 1 + 3t \text{ and } y = -5 + 2t}$

Problem 2 (Vector Equation)

- Find the Vector equation for a line that has:
- Slope 4 and passes the point $(-2, 3)$

Work

- $\vec{v} = \langle 1, 4 \rangle$
- $\vec{r}_0 = \langle -2, 3 \rangle$
- $\vec{r}_0 + t\vec{v} = \langle -2, 3 \rangle + t\langle 1, 4 \rangle$
- $\vec{r}_0 + t\vec{v} = \langle -2 + t, 3 + 4t \rangle$
 $x = -2 + t$ and $y = 3 + 4t$

Our final answer will be: $\boxed{\vec{r}_0 + t\vec{v} = \langle -2 + t, 3 + 4t \rangle \quad | \quad x = -2 + t \text{ and } y = 3 + 4t}$

Problem 3 (Vector Equation)

- Find the Vector equation for a line that has:
- $(-4, 2)$ and $(2, 6)$

Work

$$\bullet m = \frac{6 - 2}{2 - (-4)} = \frac{4}{2 + 4} = \frac{4}{6} = \frac{2}{3}$$

- $\vec{v} = \langle 3, 2 \rangle$
- $\vec{r}_0 = \langle 2, 6 \rangle$
- $\vec{r}_0 + t\vec{v} = \langle 2, 6 \rangle + t\langle 3, 2 \rangle$
- $\vec{r}_0 + t\vec{v} = \langle 2 + 3t, 6 + 2t \rangle$

$x = 2 + 3t$ and $y = 6 + 2t$

Our final answer will be: $\boxed{\vec{r}_0 + t\vec{v} = \langle 2 + 3t, 6 + 2t \rangle \quad | \quad x = 2 + 3t \text{ and } y = 6 + 2t}$

Problem 1 Find the length of vector \overrightarrow{AB}

Point A: $(2, -5)$ and Point B $(3, 4)$

Work

- $\overrightarrow{AB} = \langle 3 - 2, 4 - (-5) \rangle$
- $\overrightarrow{AB} = \langle 3 - 2, 4 + 5 \rangle$
- $\overrightarrow{AB} = \langle 1, 9 \rangle$
- $\overrightarrow{AB} = \sqrt{(1)^2 + (9)^2} = \sqrt{1 + 81} = \sqrt{82} \approx 9.055$

Our final answer will be: $\boxed{\overrightarrow{AB} = \sqrt{82} \approx 9.055}$

Problem 2 Find the length of vector \overrightarrow{AB}

Point A: $(0, 0)$ and Point B $(2, 5)$

Work

- $\overrightarrow{AB} = \langle 2 - 0, 5 - 0 \rangle$
- $\overrightarrow{AB} = \langle 2, 5 \rangle$
- $\overrightarrow{AB} = \sqrt{(2)^2 + (5)^2} = \sqrt{4 + 25} = \sqrt{29} \approx 5.385$

Our final answer will be: $\boxed{\overrightarrow{AB} = \sqrt{29} \approx 5.385}$

Rewriting parametric equations as Cartesian

Answer key

1. Eliminate the parameter and write as a Cartesian equation solved for y .

$$x(t) = 2t - 2$$

$$y(t) = -4 + t$$

$$y = \frac{1}{2}x - 3$$

2. Eliminate the parameter and write as a Cartesian equation solved for y .

$$x(t) = 2t - 4$$

$$y(t) = 1 + 2t$$

$$y = x + 5$$

3. Eliminate the parameter and write as a Cartesian equation solved for y .

$$x(t) = -5t - 3$$

$$y(t) = 4 - 5t$$

$$y = x + 7$$

4. Eliminate the parameter and write as a Cartesian equation solved for y .

$$x(t) = -4t - 2$$

$$y(t) = -4 - 2t$$

$$y = \frac{1}{2}x - 3$$

Answer Key

Problem 1 (Dot Product)

- Given: $a = \langle 3, 5 \rangle$ and $b = \langle -2, 4 \rangle$
- Question: Find the dot product of $\vec{a} \cdot \vec{b}$

Work

- $\vec{a} \cdot \vec{b} = (3)(-2) + (5)(4)$
- $\vec{a} \cdot \vec{b} = -6 + 20 = 14$

Our final answer will be: 14

Problem 2 (Angle between vector)

- Given: $a = \langle 3, 5 \rangle$ and $b = \langle -2, 4 \rangle$
- Question: Find the angle between vector a and b

Work

- $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$
- $\cos \theta = \frac{14}{\sqrt{(3)^2 + (5)^2} \cdot \sqrt{(-2)^2 + (4)^2}}$
- $\cos \theta = \frac{14}{\sqrt{9 + 25} \cdot \sqrt{4 + 16}}$
- $\cos \theta = \frac{14}{\sqrt{34} \cdot \sqrt{20}}$
- $\cos \theta = \frac{14}{\sqrt{34} \cdot \sqrt{4 \cdot 5}}$
- $\cos \theta = \frac{14}{\sqrt{34} \cdot 2\sqrt{5}}$
- $\cos \theta = \frac{7}{\sqrt{34} \cdot \sqrt{5}}$
- $\cos \theta = \frac{7}{\sqrt{170}}$
- $\cos \theta = \frac{7}{\sqrt{170}} \cdot \frac{\sqrt{170}}{\sqrt{170}} = \frac{7\sqrt{170}}{170}$
- $\cos^{-1} \left(\frac{7\sqrt{170}}{170} \right) \approx 57.53^\circ$

Our final answer will be: $\approx 57.53^\circ$

Problem 3 (Dot Product)

- Given: $a = \langle -4, 7 \rangle$ and $b = \langle 1, -2 \rangle$
- Question: Find the dot product of $\vec{a} \cdot \vec{b}$

Work

- $\vec{a} \cdot \vec{b} = (-4)(1) + (7)(-2)$

- $\vec{a} \cdot \vec{b} = -4 - 14 = -18$

Our final answer will be: -18

Problem 4 (Angle between vector)

- Given: $a = \langle -4, 7 \rangle$ and $b = \langle 1, -2 \rangle$
- Question: Find the angle between vector a and b

Work

- $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|}$

- $\cos \theta = \frac{-18}{\sqrt{(-4)^2 + (7)^2} \cdot \sqrt{(1)^2 + (-2)^2}}$

- $\cos \theta = \frac{-18}{\sqrt{16 + 49} \cdot \sqrt{1 + 4}}$

- $\cos \theta = \frac{-18}{\sqrt{65} \cdot \sqrt{5}}$

- $\cos \theta = \frac{-18}{\sqrt{325}}$

- $\cos \theta = \frac{-18}{\sqrt{25 \cdot 13}}$

- $\cos \theta = \frac{-18}{5\sqrt{13}}$

- $\cos \theta = \frac{-18}{5\sqrt{13}} \cdot \frac{\sqrt{13}}{\sqrt{13}}$

- $\cos \theta = \frac{-18\sqrt{13}}{5 \cdot 13}$

- $\cos \theta = \frac{-18\sqrt{13}}{65}$

- $\theta = \cos^{-1} \left(\frac{-18\sqrt{13}}{65} \right) \approx 176.82^\circ$

Our final answer will be: ≈ 176.82°

Heavy bag problem - 425ft/lbs

	Questions	Answers
1	<p>Find the Dot Product of the Vectors.</p> <p>$\mathbf{u} = \langle -3, 0 \rangle$ $\mathbf{v} = \langle -4, -3 \rangle$</p>	12
2	<p>Find the Dot Product of the Vectors.</p> <p>$\mathbf{u} = \langle 5, -2 \rangle$ $\mathbf{v} = \langle -2, 9 \rangle$</p>	-28
3	<p>Find the Dot Product of the Vectors.</p> <p>$\mathbf{u} = 8\mathbf{i}$ $\mathbf{v} = 9\mathbf{j}$</p>	0
4	<p>Find the Angle Between the Vectors.</p> <p>$\mathbf{u} = -9\mathbf{i} - 2\mathbf{j}$ $\mathbf{v} = 3\mathbf{i} - 4\mathbf{j}$</p>	114.34°
5	<p>Find the Angle Between the Vectors.</p> <p>$\mathbf{u} = \langle -7, 7 \rangle$ $\mathbf{v} = \langle -6, -8 \rangle$</p>	98.13°
6	<p>Find the Angle Between the Vectors.</p> <p>$\mathbf{u} = \langle 9, -4 \rangle$ $\mathbf{v} = \langle 0, -8 \rangle$</p>	66.04°

	Questions	Answers
7	<p>Tell if the vectors are Parallel, Orthogonal or Neither</p> <p>$\mathbf{u} = \langle 4, 7 \rangle$ $\mathbf{v} = \langle 14, -8 \rangle$</p>	Orthogonal
8	<p>Tell if the vectors are Parallel, Orthogonal or Neither</p> <p>$\mathbf{u} = \langle 3, 6 \rangle$ $\mathbf{v} = \langle 6, 3 \rangle$</p>	Neither
9	<p>Tell if the vectors are Parallel, Orthogonal or Neither</p> <p>$\mathbf{u} = \langle -24, 16 \rangle$ $\mathbf{v} = \langle -6, 4 \rangle$</p>	Parallel
10	<p>Find the Resultant Vector.</p> <p>$\mathbf{f} = \langle 4, -1 \rangle$ $\mathbf{v} = \langle -9, 8 \rangle$ Find: $\mathbf{f} + \mathbf{v}$</p>	$\langle -5, 7 \rangle$
11	<p>Find the Resultant Vector.</p> <p>Given: $\overrightarrow{A} = (8, -7)$ $\overrightarrow{B} = (-7, -10)$ Find: $4\overrightarrow{AB}$</p>	$\langle -60, -12 \rangle$
12	<p>Find the Resultant Vector.</p> <p>Given: $\overrightarrow{A} = (7, 1)$ $\overrightarrow{B} = (10, -5)$ $\overrightarrow{C} = (6, 8)$ $\overrightarrow{D} = (3, -9)$ Find: $-\overrightarrow{AB} + \overrightarrow{CD}$</p>	$\langle -6, -11 \rangle$

	Questions	Answers
13	<p>Write the Resultant Vector as a Linear Combination.</p> $\mathbf{u} = 14\mathbf{i} - 48\mathbf{j}$ <p>Find: $\sqrt{3} \cdot \mathbf{u}$</p>	$14\sqrt{3}$
14	<p>Write the Resultant Vector as a Linear Combination.</p> $\mathbf{a} = -10\mathbf{i} - 3\mathbf{j}$ $\mathbf{b} = 10\mathbf{i} - 5\mathbf{j}$ <p>Find: $-\mathbf{a} + \mathbf{b}$</p>	$20\mathbf{i} - 2\mathbf{j}$
15	<p>Find the Magnitude of the Vector.</p> <p>\overrightarrow{CD} where $C = (8, -10)$ $D = (10, 9)$</p>	$\sqrt{365}$
16	<p>Find the Magnitude of the Vector.</p> <p>\overrightarrow{CD} where $C = (-2, 3)$ $D = (0, 6)$</p>	$\sqrt{13}$
17	<p>Find the Magnitude of the Vector.</p> $\mathbf{r} = \langle 15, 36 \rangle$	39
18	<p>Find the Magnitude of the Vector.</p> $\mathbf{b} = \langle 4, -\sqrt{34} \rangle$	$5\sqrt{2}$

	Questions	Answers
19	<p>Find the Magnitude of the Vector.</p> $-9\mathbf{i} + 12\mathbf{j}$	15
20	<p>Find the Direction Angle of the Vector.</p> $\overrightarrow{PQ} \text{ where } P = (-6, 3) \quad Q = (10, -8)$	325.49°
21	<p>Find the Direction Angle of the Vector.</p> $\mathbf{k} = \langle 24, -32 \rangle$	306.87°
22	<p>Find the Direction Angle of the Vector.</p> $-10\mathbf{i} + \sqrt{69} \cdot \mathbf{j}$	140.28°
23	<p>Find the Unit Vector in the opposite direction of a.</p> $\mathbf{a} = \langle -13, 6\sqrt{22} \rangle$	$\left\langle \frac{13}{31}, -\frac{6\sqrt{22}}{31} \right\rangle$
24	<p>Find the Unit Vector.</p> <p>Given: $T = (6, -1)$ $X = (6, -5)$</p>	$\langle 0, -1 \rangle$